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DIRECT AND INDIRECT SUSTAINABILITY EFFECTS

Direct
C02-reduced production (reduction via H2, NH3, …)
Electrification using ‘green’ power sources (electrolysis, plasma, …)
Recycling (scrap sorting, recycling-oriented alloys, alloys for max. scrap use)
Process efficiency (near-net shape manufacturing, …)
Robust catalyst
…

Indirect
Weight reduction in transportation at higher safety (Fe: AHSS, Al: 7xxx)
Product longevity (corrosion, hydrogen, fatigue resistance)
Damage tolerance & repairability (microstructure design)
Energy conversion, higher efficiency, H as fuel (FeC, FeAl, superalloys)
Lower electrical resistivity, lower magnetic losses,… (hard magnets, Al, FeSi)
Energy harvesting: thermoelectrics, solar cell absorbers (Heusler, perowskites)
…
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Processes

Metals as 
enablers

AHSS: Advanced High Strength Steels, 7xxx: High strength Aluminium alloys with Zn, Cu and Mg addition
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Materials as 
sustainability enablers

Sustainable use of 
resources in the 

material value chain

Materials for 
electrification

Artificial Intelligence, 
digitial materials, 

efficient manufacturing

H2Materials for 
longevity and a 

hydrogen economy

O2

Design of 
materials for 

infinite recycling

Materials Science 
for a 

Circular Economy

~2/3

~1/3
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EXAMPLE OF TWO TYPES OF EFFECTS: INDIRECT AND DIRECT

4

Direct
sustainability

Indirect
sustainability

M A X - P L A N C K - I N S T I T U T  |  D I E R K  R A A B E
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Tame 2 billion tons
metals / year
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Demand is HUGE & GROWING: 
CO2 problem MUST be solved

Data: Steel instituteM A X - P L A N C K - I N S T I T U T  |  D I E R K  R A A B E

F2O3 + 3 CO → 2 Fe + 3 CO2
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More research !
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REDUCTION KINETICS OF HEMATITE 700°C BY HYDROGEN

12

R
e

d
u

c
ti

o
n

ra
te

Kim et al. Acta Mater 2021 in press



by Prof. Marc Willinger, ETH







ATOMIC-SCALE SCHEMATIC VIEW OF WÜSTITE REDUCTION BY H2
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PLASMA REDUCTION

H containing plasma
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Thin slab and thin 
strip casting

Potential for Impact

Far
Technology 
readiness

High

Near

Low

Ti-alloys

Steels

Al-alloys

Ni-alloys

Any
material

Reuse of alloys

Medium and high 
entropy alloys

Alloys with enhanced 
contaminant tolerance

Scrap sorting 
and separation

Waste heat 
harvesting

Within-alloy family recycling

Electrical energy from 
renewable sources

CO2-reduced production (e.g. H2, NH3, CH4 …)

Recycling-oriented 
alloy design

Corrosion 
protection & 

longevity

Less scrap 
production in 

manufacturing

Byproduct 
management

Alloy design for 
weight-reduction

Efficiency through high-
temperature materials

Additive
manufacturing

Damage tolerance/
Repairability
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Plasma based reduction

Scalable energy 
materialsCatalysts

High leverage
High risk
Basic research


