Sustainabity challenges for metals:

Use of hydrogen for making steels
Dierk Raabe




DIRECT AND INDIRECT SUSTAINABILITY EFFECTS

Direct Processes

CO0,-reduced production (reduction via H,, NH;, ...)

Electrification using ‘green’ power sources (electrolysis, plasma, ...)
Recycling (scrap sorting, recycling-oriented alloys, alloys for max. scrap use)
Process efficiency (near-net shape manufacturing, ...)

Robust catalyst

Indirect

Weight reduction in transportation at higher safety (Fe: AHSS, Al: 7xxx) Metals as
Product longevity (corrosion, hydrogen, fatigue resistance) enablers

Damage tolerance & repairability (microstructure design)

Energy conversion, higher efficiency, H as fuel (FeC, FeAl, superalloys)

Lower electrical resistivity, lower magnetic losses,... (hard magnets, Al, FeSi)
Energy harvesting: thermoelectrics, solar cell absorbers (Heusler, perowskites)

D. Raabe et al. Nature (2019) Strategies for improving the sustainability of structural metals
AHSS: Advanced High Strength Steels, 7xxx: High strength Aluminium alloys with Zn, Cu and Mg addition 2
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EXAMPLE OF TWO TYPES OF EFFECTS: INDIRECT AND DIRECT

Sport Utility Vehicle "
Today‘s SUV

Green
Aluminium

Mass: 1711 kg (From Scrap)

@ther
Glass

35% CO,
& Energy
Reduction

Plastics
Iron

28% Weight
Reduction

Aluminium
9 wt.%

Aluminium

474 kg 37 wt.%

28% Weight Reduction &
35% CO, and Energy Reduction

Step 1: Weight Reduction Step 2: CO, and Energy Reduction

Direct

Indirect
sustainability

sustainability
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Impacts in 2060 relative

Concrete to most polluting material COpper
Acids . Toxicity

0.5

GHG

Energy 4‘§

Water
Acidification Human toxicity
Corrosive impact of pollutants (SO,; NOx) Impacts of toxic substances on human health,
on soil, water, ecosystems, buildings. either by inhalation or via the food chain.

Climate Change Land use

Radiative forcing of GHGs causing rising temperatures, Land surface used to produce the resource.
sea level rise, extreme weather events. A A

Photochemical oxidation

Cumulative energy demand ' ﬂ
Total energy use along the production chain. 4“ Impacts of tropospheric ozone from air pollutants

(VOC, CO), sometimes visible as smog.

Eutrophication : Terrestrial ecotoxicity
Impacts of nutrients (N, P) on soil and water Impacts of toxic substances on terrestrial
quality affecting ecosystems and drinking water. ecosystems.

Freshwater aquatic ecotoxicity
Impacts of toxic substances on freshwater
aquatic ecosystems.



Energy

GHG

Food

Iron

Acidification
Corrosive impact of pollutants (SO,; NOx)
on soil, water, ecosystems, buildings.

Climate Change

Radiative forcing of GHGs causing rising temperatures,

sea level rise, extreme weather events.

Cumulative energy demand
Total energy use along the production chain.

Eutrophication
Impacts of nutrients (N, P) on soil and water
quality affecting ecosystems and drinking water,

Freshwater aquatic ecotoxicity
Impacts of toxic substances on freshwater

aquatic ecosystems.

Toxicity

M
o>

Other metals

Human toxicity
Impacts of toxic substances on human health,
either by inhalation or via the food chain.

Land use
Land surface used to produce the resource

Photochemit oxidation

Impacts of tropospherlc ozone from air pollutants
(VOC, CO), sometimes visible as smog.

Terrestrial ecotoxicity

Impacts of toxic substances on terrestrial
ecosystems.
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Steel demand — today and forecast 2050 F,0;,+3C0O — 2 Fe +3CO,

2016 2050
400 Mtonnes 1,400 Mtonnes
recycled, : 1,200 Mtonnes recycled, 2,800 1,400 Mtonnes

scrap based

ore based scrap based Mtonnes ore based

~ Nt

Demand is HUGE & GROWING:
CO, problem MUST be solved
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lIronmaking
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REDUCTION KINETICS OF HEMATITE 700°C BY HYDROGEN \“‘J
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by Prof. Marc Willinger, ETH
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ATOMIC-SCALE SCHEMATIC VIEW OF WUSTITE REDUCTION BY H,

Wastite Fe layer

WOV
CCOOOQQQ .
vo 6000 S0 0006w
O o CCCOCQQQ H,0

e COOO 0006

Fe ()

o XX
" 900 eooos

FeO — Fe+O H,+O — H,0

MAX-PLANCK AINSTITUT | DIERK RAABE KIM ET AL. ACTA MATER 2021 IN PRESS



PLASMA REDUCTION

process
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(e) IPF: (g) oxygen content:
PF: (f) Phase map: min. [N max

[ wiistite
M ferrite (h) silicon content:
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Technology

. Near
readiness

D. Raabe et al. Nature (2019)
Strategies for improving the
sustainability of structural metals

Potential for Impact

High
SO Electrical energy from [ Plasma based reduction ] High leverage
protection & [ renewable sources g . g
longevity ngh risk
Scalable energy [ CO,-reduced production (e.g. H,, NH,, CH4 ... ] i
[ Catalysts ] [ materials ] 2 P (e.g. H,, NH, ) Basic research
Less scrap "\ [ Within-alloy family recycling ]
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maHUfacturing Y, Scrap sorting J
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[ Waste h.eat ] [ alloy design
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